科学技术部主管 | 中国科技产业化促进会主办

微信公众号

微信公众号

天津 河北 山西 辽宁 吉林 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 内蒙古 黑龙江
网站首页 > 科技大数据 > 人工智能 > 正文

AI可高速预测宇宙中复杂大型结构

来源:科技日报    时间:2020-02-07    

  作为科学家可以运用的最大规模的验证科学,观测验证宇宙基本框架的“观测宇宙学”逐渐成熟。“宇宙大规模结构”近年来越来越受到重视。“宇宙大规模结构”指的是各个星系交织的网状结构,是宇宙迄今为止复杂进化史的终结状态。利用天文望远镜等对其进行详细观察,有助于揭开影响宇宙进化的暗物质和暗能量之谜。

  为了解我们所在的宇宙是什么样的宇宙,根据物理理论,使用超级计算机计算宇宙中各种大规模结构的演化,将其与观测数据进行对比,是一种非常有效的手段。但是,这需要对数十万到百万个宇宙论模型进行精确的计算,而即使用当前可利用的最大计算资源,也很难进行如此大量的模拟。

  日本京都大学基础物理学研究所特定准教授西道启博的研究小组,试图利用人工智能的“机器学习”方法来解决此难题。研究小组的机器学习设备被称为“暗模拟器”。该装置对宇宙中暗物质成分的数量和性质等进行了各种计算,从计算得出的101个虚拟宇宙中“学习”相应关系。这样就可以快速对新宇宙学模型预期的结果进行理论预测,而无需进行新的模拟。

  “机器学习”使用的虚拟宇宙数据是日本国立天文台超级计算机“ATERUI”和“ATERUI Ⅱ”耗时3年计算出的总容量300TB(terabyte)的巨大模拟数据。

  “暗模拟器”可以预测星系的空间分布和弱重力透镜效应的实际观察结果,误差约为2%—3%,利用标准笔记本电脑可以在几秒钟内完成理论预测,从而将计算成本大大降低。

  “暗模拟器”是首次在实际观测数据上直接应用的AI工具,向利用人工智能分析宇宙大数据迈出实质性的一步,也助推了下一代终极宇宙观测学的到来。

  研究成果已刊登在近期的《天体物理学杂志》上。

上一篇:抗击疫情 人工智能大数据迅速生成战斗力
下一篇:中国移动5G智能医护机器人 支援武汉抗疫前线